已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△APC内的概率是A.B.C.D.
网友回答
A
解析分析:本题考查的知识点是几何概型的意义,关键是绘制满足条件的图形,数形结合找出满足条件的△APC的面积大小与△ABC面积的大小之间的关系,再根据几何概型的计算公式进行求解.
解答:解:如图示,取BC的中点为D,连接PA,PB,PC,则,又P点满足,故有,可得三点A,P,D共线且,即P点为A,D的中点时满足,此时S△APC=S△ABC故黄豆落在△APC内的概率为,故选A.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.