ω是正实数,设Sω={θ|f(x)=cos[ω(x+θ)]是奇函数},若对每个实数a,Sω∩(a,a+1)的元素不超过2个,且有a使Sω∩(a,a+1)含2个元素,则ω的取值范围是________.
网友回答
(π,2π]
解析分析:由Sω={θ|f(x)=cos[ω(x+θ)]是奇函数},推出Sω的范围,Sω∩(a,a+1)的元素不超过2个,且有a使Sω∩(a,a+1)含2个元素,推出π<1且2×π≥1,求得ω的范围.
解答:Sω={θ|f(x)=cos[ω(x+θ)]是奇函数}?Sω={θ=,k∈Z}={-π,-π,π,π}因为对每个实数a,Sω∩(a,a+1)的元素不超过2个,且有a使Sω∩(a,a+1)含2个元素,也就是说Sω中任意相邻的两个元素之间隔必小于1,并且Sω中任意相邻的三个元素的两间隔之和必大于等于1,即π<1且2×π≥1;解可得π<ω≤2π.故