椭圆=1上一点P与椭圆的两个焦点F1,F2的连线互相垂直,则△PF1F2的面积为

发布时间:2020-07-09 10:05:24

椭圆=1上一点P与椭圆的两个焦点F1,F2的连线互相垂直,则△PF1F2的面积为













A.20












B.22











C.24











D.28

网友回答

C解析分析:根据椭圆的标准方程求出焦点坐标,利用点P与椭圆的两个焦点F1,F2的连线互相垂直以及点P在椭圆上,求出点P的纵坐标,从而计算出△PF1F2的面积.解答:由题意得 a=7,b=2,∴c=5,两个焦点F1 (-5,0),F2(5,0),设点P(m,n),则 由题意得? =-1,+=1,n2=,n=±,则△PF1F2的面积为? ×2c×|n|=×10×=24,故选 C.点评:本题考查两直线垂直时斜率之积等于-1,以及椭圆的简单性质的应用,考查计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!