已知||=2c,||=2a(a>c),2=,2=,?=0(G为动点) (a>c).
(1)建立适当的平面直角坐标系,求出点P的轨迹方程;
(2)若点P的轨迹上存在两个不同的点A、B,且线段AB的中垂线与EF(或EF的延长线)有唯一的交点C,证明:||<.
网友回答
解:(1)|PE|+|PF|=|PG|+|PF|=|FG|=2a(>|EF|),∴点P的轨迹为椭圆
∴轨迹方程为
(2)设A(x1,y1),B(x2,y2).A,B的中点M(x0,y0),C(t,0).
当kCM不存在时,显然成立.
当kCM存在时,kCM=.由“点差法”得:
∵kAB?kCM=-1..
解析分析:(1)根据向量式转化成:|PE|+|PF|=|PG|+|PF|=|FG|=2a(>|EF|),结合椭圆的定义得点P的轨迹为椭圆,最后写出轨迹方程即可;
(2)先设A(x1,y1),B(x2,y2).A,B的中点M(x0,y0),C(t,0).分类讨论:①当kCM不存在时,显然成立.
②当kCM存在时,利用“点差法”得直线AB的斜率,再结合题中条件:“kAB?kCM=-1.”即可证得结论.
点评:本小题主要考查椭圆的应用、轨迹方程、不等式的解法等基础知识,考查运算求解能力,解答的关键是利用设而不求的方法:“点差法”.