一个口袋中有4个白球,2个黑球,每次从袋中取出一个球.
(1)若有放回的取2次球,求第二次取出的是黑球的概率;
(2)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;
(3)若有放回的取3次球,求取出黑球次数X的分布列及E(X).
网友回答
解:设Ai=“第i次取到白球”,Bi=“第i次取到黑球”
(1)每次均从6个球中取球,每次取球的结果互不影响,
所以.
(2)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”,
所以,所求概率.
(3)有放回的依次取出3个球,则取到黑球次数X的可能取值为0,1,2,3.
三次取球互不影响,由(1)知每次取出黑球的概率均为,
所以,;
;
;
.
X0123P这个试验为3次独立重复事件,X服从二项分布,即,所以,E(X)=1.
解析分析:先设Ai=“第i次取到白球”,Bi=“第i次取到黑球”
(1)每次均从6个球中取球,每次取球的结果互不影响,根据等可能事件的概率即可得到;
(2)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”,根据等可能事件的概率即可得到所求概率;
(3)有放回的依次取出3个球,则取到黑球次数X的可能取值为0,1,2,3,三次取球互不影响,由(1)知每次取出黑球的概率均为,分别求出X取值为0,1,2,3的概率写出分布列,这个试验为3次独立重复事件,X服从二项分布,最后根据二项分布的数学期望公式即可求解.
点评:本小题主要考查等可能事件的概率、离散型随机变量及其分布列、离散型随机变量的期望与方差等基础知识,考查运算求解能力.属于中档题.