解答题已知函数f(x)=mx3-x的图象上以(1,n)为切点的切线的倾斜角为.(1)求

发布时间:2020-07-09 05:32:57

解答题已知函数f(x)=mx3-x的图象上以(1,n)为切点的切线的倾斜角为.
(1)求m,n的值;并求函数f(x)的单调区间;
(2)是否存在最小整数k;使得不等式f(x)≤k-1995对于区间[-1,3]恒成立?若存在,请求出最小整数k的值;若不存在,请说明理由.

网友回答

解:由已知f′(x)=3mx2-1,则,得,
∴f′(x)=2x2-1.当f′(x)>0,即2x2-1>0,得当时,f(x)单调递增,故当时,f(x)单调递减.
∴函数f(x)的单调增区间是,减区间是
(2)设存在最小整数k,使得f(x)≤k-1995,在区间[-1,3]恒成立,则?x∈[-1,.3],有恒成立,
令,只须g(x)max≤k,
此时g′(x)=2x2-1,
由(1)知函数g(x)在区间单调递增,在单调递减.
∴当时,g(x)取得极大值;

∴函数在[-1,3]的最大值为g(3)=2010
∴使得不等式f(x)≤k-1995对于区间[-1,3]恒成立最小正整数k=2010解析分析:(1)函数f(x)=mx3-x的图象上以(1,n)为切点的切线的倾斜角为.由此条件建立两个方程求求m,n的值;(2)是否存在最小整数k;使得不等式f(x)≤k-1995对于区间[-1,3]恒成立可以转化为求f(x)+1995在区间[-1,3]的最值问题.求出函数f(x)+1995在区间[-1,3]的最大值,再由此判断出参数k的最小值即可.点评:本题考查导数在最大值与最小值问题中的应用,解题的关键是利用导数研究出函数的单调性,判断出函数的最值,本题第二小题是一个恒成立的问题,恒成立的问题一般转化最值问题来求解,本题即转化为用导数求函数在闭区间上的最值的问题,求出最值再判断出参数的取值.
以上问题属网友观点,不代表本站立场,仅供参考!