已知点P是双曲线右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若成立,则双曲线的离心率为
A.4
B.
C.2
D.
网友回答
C解析分析:设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三个高相等且均为圆I半径r的三角形.利用三角形面积公式,代入已知式,化简可得|PF1|-|PF2|=,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.解答:解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是△IF1F2,△IPF1,△IPF2的高,∴,,其中r是△PF1F2的内切圆的半径.∵∴=+两边约去得:|PF1|=|PF2|+∴|PF1|-|PF2|=根据双曲线定义,得|PF1|-|PF2|=2a,=c∴2a=c?离心率为e=故选C点评:本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.