已知m、n是两条不同直线,α、β是两个不同平面,下列命题中的真命题是A.如果m?α,n?β,m∥n,那么α∥βB.如果m?α,n?β,α∥β,那么m∥nC.如果m?α

发布时间:2020-07-31 09:08:23

已知m、n是两条不同直线,α、β是两个不同平面,下列命题中的真命题是A.如果m?α,n?β,m∥n,那么α∥βB.如果m?α,n?β,α∥β,那么m∥nC.如果m?α,n?β,α∥β且m,n共面,那么m∥nD.如果m∥n,m⊥α,n⊥β,那么α⊥β

网友回答

C

解析分析:A、根据面面平行的判定定理判断.B、如果α∥β,则两平面内的直线无公共点,则平行或异面.C、如果α∥β,则两平面内的直线无公共点,又两直线在同一平面内,故平行,D、如果m∥n,m⊥α,则n⊥α,再由垂直于同一直线的两平面平行判断.

解答:A、根据面面平行的判定定理可知:若一个平面内有两条相交直线平行于同一平面,则两平面平行,故不正确.B、如果α∥β,则两平面内的直线无公共点,则平行或异面,故不正确.C、如果α∥β,则两平面内的直线无公共点,则平行或异面,又两直线在同一平面内,故平行,所以正确.D、如果m∥n,m⊥α,则n⊥α,又∵n⊥β,那么α∥β,故不正确.故选C

点评:本题主要考查线与线,线与面,面与面的位置关系及垂直与平行的判定定理和性质定理,综合性强,方法灵活,属中档题.
以上问题属网友观点,不代表本站立场,仅供参考!