如图,△ABC内接于⊙O,∠A所对弧的度数为120°,∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①∠BFE=60°

发布时间:2020-07-30 12:44:14

如图,△ABC内接于⊙O,∠A所对弧的度数为120°,∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①∠BFE=60°;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是A.①④B.①②③C.①③D.②③

网友回答

C
解析分析:①由于∠A所对弧的度数为120°,根据圆周角定理可知∠A=60°;在△ABC中,∠ABC+∠ACB=180°-∠A=120°,即∠FBC+∠FCB=60°,而∠BFE正好是△BFC的外角,即∠BFE=∠FBC+∠FCB=60°,故正确;②若BC=BD,需满足一个条件:∠BCD=∠BDC,且看这两个角的表达式:∠BCD=180°-∠A-2∠DBA=120°-2∠DBA;∠BDC=∠BDA+∠A=60°+∠DBA;联立两式,可得∠DBA=20°;此时∠ABC=40°,而没有任何条件可以说明∠ABC的度数是40°,即可得出本选项错误.③由于F是∠ABC和∠ACB角平分线的交点,因此F是△ABC的内心,可过F作AB、AC的垂线,通过证构建的直角三角形全等,得出FE=FD的结论,因结论正确;④若BF=2DF,则F是△ABC的重心,即三边中线的交点,而题目给出的条件是F是△ABC的内心,显然两者的结论相矛盾,因此不正确.所以本题正确的结论:①③.

解答:解:∵∠A所对弧的度数为120°,∴∠A=×120°=60°,∵BD、CE分别是∠ABC和∠ACB的角平分线,∴点F是△ABC的内心内心,∠CBD=∠ABC,∠BCE=∠ACB,∴∠BFE=∠CBD+∠BCE=(∠CBA+∠BCA)=(180°-∠A)=60°,故①正确;∵∠BDC=∠A+∠ABC=60°+∠DBA∠BCA=180°-∠A-2∠DBA=120°-2∠DBA若BC=BD成立,则应有∠BDC=∠BCA应有60°+∠DBA=120°-2∠DBA,即∠DBA=20°,此时∠ABC=40°,∴∠BCD=∠BDC=80°,而根据题意,没有条件可以说明∠ABC是40°,故②错误;∵点F是△ABC内心,作FW⊥AC,FS⊥AB则FW=FS,∠FSE=∠FWD=90°∠EFD=∠SFW=120°∴∠SFE=∠WFD,△FSE≌△WFD∴FD=FE,故③正确;由于点F是内心而不是各边中线的交点,故BF=2DF不一定成立,因此④错误.因此本题正确的结论为①③,故选C.

点评:本题考查了三角形的内心、角的平分线的性质、三角形内角和定理、全等三角形的判定和性质等知识,综合性强,难度较大.要特别注意的是④中,三角形内心和重心的区别,不要混淆两者的概念.
以上问题属网友观点,不代表本站立场,仅供参考!