如图,△ADB∽△ABC,若∠A=75°,∠D=45°,则∠CBD的度数是A.75°B.60°C.45°D.15°
网友回答
D
解析分析:由∠A=75°,∠D=45°,根据三角形内角和定理,即可求得∠ABD的度数,又由△ADB∽△ABC,根据相似三角形的对应角相等,即可求得∠ABC的度数,又由∠CBD=∠ABD-∠ABC,即可求得∠CBD的度数.
解答:∵∠A=75°,∠D=45°,∴∠ABD=180°-∠A-∠D=60°,∵△ADB∽△ABC,∴∠ABC=∠D=45°,∴∠CBD=∠ABD-∠ABC=60°-45°=15°.故选D.
点评:此题考查了相似三角形的性质与三角形内角和定理.解题的关键是掌握相似三角形对应角相等定理的应用.