?x∈R,不等式ax2+ax+1>0,则实数a的取值范围是A.[0,4]B.[0,4)C.(-∞,0)D.[4,+∞)
网友回答
B
解析分析:当a=0 时,不等式恒成立;当a≠0时,由题意可得△=a2-4a<0,且a>0,解得 0<a<4,将这两种情况下的a的取值范围取并集,即为所求.
解答:当a=0 时,不等式即1>0,恒成立.当a≠0时,由题意可得△=a2-4a<0,且a>0,解得 0<a<4.综上,实数a的取值范围是[0,4),故选B.
点评:本题考查二次函数的性质,函数的恒成立问题,体现了分类讨论的数学思想,注意检验a=0时的情况,这是解题的易错点.