如图,在矩形ABCD中,∠BAD的平分线交BC于点E,点O为对角线的交点,且∠CAE=15°,则∠BOE=
网友回答
如图,在矩形ABCD中,∠BAD的平分线交BC于点E,点O为对角线的交点,且∠CAE=15°,则∠BOE=______度.(图2)如图,连接OE;
∵四边形ABCD是矩形,且EA平分∠BAD,
∴∠BAE=45°;
∴△ABE是等腰直角三角形,得AB=BE;
∵∠CAE=15°,
∴∠BAO=∠CAE+∠BAE=60°;
又∵OA=OB,
∴△BAO是等边三角形,得AB=BO;
∴BO=BE;
∵∠OBC=90°-∠ABO=30°;
∴∠BOE=(180°-30°)÷2=75°.
故答案为75.
======以下答案可供参考======
供参考答案1:
∴∠BA0=60° ∵AO=BO 可以直接写成等边△ABO
在得出∩AOB
供参考答案2:
∵四边形ABCD为矩形
∴∠DAB=∠ABC=90°
∵AE平分∠BAD
∴∠DAE=∠EAB=45°
又∵∠ABC=90°
∴△ABE为等腰直角三角形
∴AB=BE
∵∠OAE=15°
∴∠DAC=30°=∠DBC
易证△OAB为正三角形
∴AO=BO=AB=BE
∴∠BOE=∠OEB=(180°—30°)÷2=75°
供参考答案3:
∵ABCD为矩形,∴∠BAD=90°
∵AB CD 相交于O点,∴ AO=CO=BO=DO
∵AE平分∠BAD
交BC于E点 ∴∠BAE=∠EAD=45°∵∠EAC=15° ∴∠BA0=60° ∵AO=BO ∴∠ABO=60°