题库大全
查看
题库大全
题库
考试培训
财会类题库
网络知识
作业答案
作业习题
蚂蚁庄园答案
当前位置:
题库大全
作业答案
在直棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,且AC=BC=AA1,则BC1与面ACC1A1所成的角为________.
在直棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,且AC=BC=AA1,则BC1与面ACC1A1所成的角为________.
发布时间:2020-07-31 19:02:48
在直棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,且AC=BC=AA1,则BC1与面ACC1A1所成的角为 ________.
网友回答
45°
解析分析
:画出直棱柱ABC-A1B1C1,找出BC1与面ACC1A1所成的角,求解即可.
解答:
解:如图在直棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,且AC=BC=AA1,则BC1与面ACC1A1所成的角为∠CC1B因为AC=BC=AA1所以∠CC1B=45°故
以上问题属网友观点,不代表本站立场,仅供参考!
上一条:
执行如图所示的程序框图,若输入A的值为2,则输入的P值为A.2B.3C.4D.5
下一条:
已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠?,求实数k的取值范围.
资讯推荐
下列命题是假命题的为A.?x∈R,lgex=0B.?∈R,tanx=xC.?x∈(0,),cotx>cosxD.?∈R,ex>x+1
已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示A.b>0,d<0,a<cB.b>0,d<0,a>cC.b<0,d>
函数f(x)=3kx+1-2k在(-1,1)上存在x0,使f(x0)=0,则k的取值范围是A.B.(-∞,-1)C.(-∞,-1)∪(,+∞)D.
已知△ABC的内角A,B,C的对边分别为a,b,c,其中c=2,又向量=(1,cosC),=(cosC,1),?=1.(1)若A=45°,求a的值;(2)若a+b=4
如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,分别为AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)求直线AD与平面BEF所成
设集合I={?x||x-2|≤2,x∈N*},P={?1,2,3?},Q={?2,3,4?},则?I(P∩Q)=A.{1,4}B.{2,3}C.{1}D.{4}
过圆x2+y2=1外一点(0,4)作圆的两条切线,切点分别是A、B,则弦AB所在直线方程是A.B.C.D.
已知.(1)b=2时,求f(x)的值域;(2)若b为正实数,f(x)的最大值为M,最小值为m,且满足:M-m≥4,求b的取值范围.
在平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=60°,∠BAA1=∠DAA1=90°,则AC1的长为A.B.4C.5D.
已知函数f(x)=2cos2+sinx.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)求f(x)在区间[0,π]上的最大值与最小值.
如图,将边长为1,2,3的正八边形叠放在一起,同一边上相邻珠子的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是__
某所大学的计算机工程学院的大一新生有160人,其中男生95人,女生65人,现在要抽取一个容量为20的样本,若用分层抽样,女生应抽取________人.
从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)概率为A.B.C.D.
(文)如图,在单位正方体ABCD-A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线A1P与BC1间的距离为定值;②三棱锥D-BPC1的体积为定
角α的终边在射线y=2x(x<0)上,则sinα等于A.B.C.D.
幂函数f(x)的图象在第一、三象限,且f(3)<f(2),则下列各式中一定成立的是A.f(-3)<f(-2)B.f(-3)>f(-2)C.f(-3)>f(2)D.f(
设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=A.B.C.D.
函数.(1)求f(x)的值域;(2)求f(x)在[0,π)上的单调递减区间.
对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.
(坐标系与参数方程选做题)曲线(t为参数且t>0)与曲线(θ为参数)的交点坐标是________.
已知曲线C的极坐标方程为,(1)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;(2)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.
如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且,,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n
已知曲线f(x)=x(a+b?lnx)过点P(1,3),且在点P处的切线恰好与直线2x+3y=0垂直.求(Ⅰ)?常数a,b的值;(Ⅱ)f(x)的单调区间.
已知关于x的方程x2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,则的取值范围是A.B.C.(0,+∞)D.
已知函数f(x)=,a∈R.(I)若曲线y=f(x)在点(4,f(4))处切线的斜率为12,求a的值;(II)若x∈[0,1],求函数f(x)的最小值.
已知数列{an}的前n项和为Sn,且曲线y=x2-nx+1(n∈N*)在x=an处的切线的斜率恰好为Sn.(1)求数列{an}的通项公式;(2)求数列{nan}的前n
某学生在上学路上要经过3个路口,假设在各路口遇到红灯或绿灯是等可能的,遇到红灯时停留的时间都是2min.则这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率
已知向量.(1)求;(2)若,求k的值.
幂函数当x∈(0,+∞)时为减函数,则实数m值为A.1B.2C.3D.-1,2
已知函数f(x)=(a-1)x2+(a-1)x+1如果f(x)>0在R上恒成立,则a的取值范围是________.
返回顶部