数列{an}中,已知a1=-2,a2=-1,a3=1,若对任意正整数n,有anan+1an+2an+3=an+an+1+an+2+an+3,且an+1an+2an+3

发布时间:2020-08-04 14:17:50

数列{an}中,已知a1=-2,a2=-1,a3=1,若对任意正整数n,有anan+1an+2an+3=an+an+1+an+2+an+3,且an+1an+2an+3≠1,则该数列的前2010?项和S2010=A.2010B.-2011C.-2010D.-2008

网友回答

B

解析分析:分别表示出anan+1an+2an+3=an+an+1+an+2+an+3,an+1an+2an+3an+4=an+1+an+2+an+3+an+4,两式相减可推断出an+4=an,进而可知数列{an}是以4为周期的数列,只要看2010是3的多少倍,然后通过a1=-2,a2=-1,a3=1求得a4,而2010是4的502倍余2,故可知S2010=502×(-2-1+1-2)+a1+a2
以上问题属网友观点,不代表本站立场,仅供参考!