已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=,A

发布时间:2020-08-04 14:28:56

已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.
(1)若AP=,AB=BC,求矩形ABCD的面积;
(2)若CD=PM,求证:AC=AP+PN.

网友回答

(1)解:∵AP⊥CP且AP=CP,
∴△APC为等腰直角三角形,
∵AP=,
∴AC=,
∵AB=BC,
∴设AB=x,BC=3x,
∴在Rt△ABC中,
x2+(3x)2=10,
10x2=10,
x=1,
∴SABCD=AB?BC=1×3=3;

(2)解:延长AP,CD交于Q,
∵∠1+∠CND=∠2+∠PNA=90°,
且∠CND=∠ANP,
∴∠1=∠2,
又∠3+∠5=∠4+∠5=90°,
∴∠3=∠4,
在△APM和△CPD中
∵,
∴△APM≌△CPD(ASA),
∴DP=PM,
又∵CD=PM,
∴CD=PD,
∴∠1=∠4=∠3,
∵∠1+∠Q=∠3+∠6=90°
∴∠Q=∠6
∴DQ=DP=CD
∴D为CQ中点,
又∵AD⊥CQ
∴AC=AQ=AP+PQ,
在△APN和△CPQ中
∵,
∴△APN≌△CPQ(ASA),
∴PQ=PN
∴AC=AP+PQ=AP+PN.
解析分析:(1)根据勾股定理求出AC,设AB=x,BC=3x,在Rt△ABC中根据勾股定理求出,求出AB、BC、即可求出
以上问题属网友观点,不代表本站立场,仅供参考!