设函数f(x)对任意x、y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0.(1)证明:f(x)为奇函数;     (2)证明:f(x)在R上为减

发布时间:2020-07-31 22:41:52

设函数f(x)对任意x、y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0.
(1)证明:f(x)为奇函数;     
(2)证明:f(x)在R上为减函数.

网友回答

证明:(1)由已知f(x+y)=f(x)+f(y)  
令x=y=0得??f(0)=0
令y=-x,得f(x-x)=f(x)+f(-x)
∴f(x)+f(-x)=0∴f(x)为奇函数.
(2)设x1,x2是?(-∞,+∞)上的任意两个实数,且x1<x2
∵x2-x1>0,f(x2-x1)<0
由(1)知f(x)为奇函数
∴f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0
∴f(x2)<f(x1)∴f(x)在R上为减函数
解析分析:(1)根据函数奇偶性定义进行判定,该函数是抽象函数,故可利用赋值法进行,令x=y=0求出f(0)=0,令y=-x,即可得到结论;(2)根据题意先证明单调性,用单调性定义,先设设x1,x2是?(-∞,+∞)上的任意两个实数,且x1<x2,f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)再由x>0时,f(x)<0来判断符号,从而得到函数的单调性.

点评:本题考查的是抽象函数,涉及到其单调性,解决这类问题关键是利用好条件,将问题转化到函数性质的定义上去应用.
以上问题属网友观点,不代表本站立场,仅供参考!