已知双曲线中心在原点,焦点F1、F2在坐标轴上.离心率e=,且过点(4,6),求双曲线的方程.

发布时间:2020-07-31 12:58:08

已知双曲线中心在原点,焦点F1、F2在坐标轴上.离心率e=,且过点(4,6),求双曲线的方程.

网友回答

解:由e==得a2+b2=2a2,
∴a2=b2,
故双曲线为等轴双曲线,故可设双曲线方程为:x2-y2=λ,
将点(4,6)代入,得16-36=λ,即λ=-20,
∴双曲线方程为-=1.
解析分析:由双曲线的离心率为,可知双曲线为等轴双曲线,设出其方程,利用待定系数法即可求得参数的值,从而可得
以上问题属网友观点,不代表本站立场,仅供参考!