解答题已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;??②f(m+1,1)=2f(m,1).
给出以下三个结论:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.
其中正确的个数为________.
网友回答
解:∵f(m,n+1)=f(m,n)+2,f(1,1)=1,∴{f(m,n)}是以1为首项,2为公差的等差数列,
∴f(1,n)=2n-1.
又∵f(m+1,1)=2f(m,1),∴{f(m,1)}是以1为首项2为公比的等比数列,
∴f(n,1)=2n-1,∴f(m,n+1)=2m-1+2n.
由f(1,5)=2×5-1=9,故(1)正确.
由f(5,1)=24=16,故(2)正确.
由f(5,6)=24+2×6=26,故(3)正确.
故