用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k-1B.2k-1C.2kD.2k

发布时间:2020-08-01 03:19:27

用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k-1B.2k-1C.2kD.2k+1

网友回答

C

解析分析:考查不等式左侧的特点,分母数字逐渐增加1,末项为,然后判断n=k+1时增加的项数即可.

解答:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.故选C.

点评:本题是基础题,考查数学归纳法证明问题的第二步,项数增加多少问题,注意表达式的形式特点,找出规律是关键.
以上问题属网友观点,不代表本站立场,仅供参考!