已知1的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是________.
网友回答
解析分析:先求出展开式中的常数项T,求得函数的周期是2,由于g(x)=f(x)-kx-k有4个零点,即函数f(x)与r(x)=kx+k有四个交点,根据两个函数的图象特征转化出等价条件,得到关于k的不等式,求解易得.
解答:∵的常数项为=2∴f(x)是以2为周期的偶函数∵区间[-1,3]是两个周期∴区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点可转化为f(x)与r(x)=kx+k有四个交点当k=0时,两函数图象只有两个交点,不合题意当k≠0时,∵r(-1)=0,两函数图象有四个交点,必有0<r(3)≤1解得0<k≤故