已知:点E、F分别为?ABCD的边BC、DA的中点,EG⊥AB,FH⊥DC,垂足为G、H.求证:EG=FH.

发布时间:2020-08-04 18:38:08

已知:点E、F分别为?ABCD的边BC、DA的中点,EG⊥AB,FH⊥DC,垂足为G、H.
求证:EG=FH.

网友回答

证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AD=BC,
∵F为AD中点,E为BC中点,
∴DF=AD,BE=BC,
∴DF=BE,
∵EG⊥AB,FH⊥DC,
∴∠FHD=∠EGB=90°,
∵在△BGE和△DHF中

∴△BGE≌△DHF(AAS),
∴EG=FH.

解析分析:根据平行四边形性质求出∠B=∠D,AD=BC,求出DF=BE,∠FHD=∠EGB=90°,根据AAS证△BGE≌△DHF,即可得出
以上问题属网友观点,不代表本站立场,仅供参考!