解答题如图,已知,(a>c),且,,C为动点.(1)建立适当的平面直角坐标系,求出点P

发布时间:2020-07-09 02:01:09

解答题如图,已知,(a>c),且,,C为动点.
(1)建立适当的平面直角坐标系,求出点P的轨迹方程;
(2)若点P的轨迹上存在两个不同的点E、F,且线段EF的中垂线与AB(或AB的延长线)相交于一点Q,求出点Q的活动范围.

网友回答

解:如图,以A,B所在直线为x轴,A,B的中垂线为y轴,建立平面直角坐标系.由题设,2,=0,
∴|.
而==2a>2c
∴点P是以A,B为焦点,长轴长为2a的椭圆.即=1
(2)设E(x1,y1),F(x2,y2),Q(x0,0)
x1≠x2,
即(x1-x0)2+y12=(x2-x0)2+y22 ①
又E,F在轨迹上,∴=1,=1
?将y12,y22 ,代入①式整理,得
2(x2-x1)═(x2-x1)2????????
∵x1≠x2,∴x0=
-a≤x1≤a,-a≤x2≤a,
-2a<x1+x2 <2a
-<x0<.
即|x0|<.
∴点在与AB中点相距?的线段上活动(不包括两端点).解析分析:(1)由已知,根据向量关系,结合线段中垂线性质,研究出==2a>2c,得知点P是以A,B为焦点,长轴长为2a的椭圆,可写出其轨迹方程.?(2)设E(x1,y1),F(x2,y2),Q(x0,0),得出 x0=,再根据-a≤x1≤a,-a≤x2≤a求出|x0|<.点在与AB中点相距?的线段上活动(不包括两端点).点评:本题考查椭圆的定义、标准方程,椭圆的简单几何性质,直线与椭圆位置关系.(1)中得出而==2a>2c (2)中得出 x0=是关键.考查解析法的思想、计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!