在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距A.厘米B.

发布时间:2020-07-30 09:07:14

在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距A.厘米B.2厘米C.厘米D.2厘米

网友回答

D
解析分析:根据旋转的性质,BB′=2OB,根据勾股定理求出OB的长即可.

解答:解:∵O为AC的中点,又∵BC=AC,∴OC=2×=1cm,根据勾股定理,OB==,根据旋转的性质,BB′=2OB=2cm.故选D.

点评:本题要把图形的旋转变化和勾股定理结合求解.旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.
以上问题属网友观点,不代表本站立场,仅供参考!