解答题设x=1是函数f(x)=的一个极值点(e为自然对数的底).
(1)求a的值,并求函数f(x)的单调区间;
(2)若函数f(x)在闭区间[m,m+1]上的最小值为0,最大值为,且m>-1.试求m的值.
网友回答
解:(1)求导函数,可得
∵x=1是函数f(x)=的一个极值点
∴f′(1)=0,∴a=-,∴
令f′(x)>0,可得或-1<x<1;令f′(x)<0,可得或x>1;
∴函数的单调增区间为,(-1,1),单调减区间为,(1,+∞)
(2)由(1)知,
∵m>-1
①当-1<m<0时,0<m+1<1,f(x)在闭区间[m,m+1]上是增函数
∴f(m)=0,∴,∴m=,不合题意;
②当0≤m<1时,m+1∈[1,2),此时最大值为
∵f(x)的最小值f(m)=0,∴,∴m=;
③当m≥1时,f(x)在闭区间[m,m+1]上是减函数
∵x>1时,,其最小值不可能为0,∴此时m不存在
综上知,m=.解析分析:(1)求导函数,利用x=1是函数f(x)=的一个极值点,可得f′(1)=0,从而可求a的值,进而可确定函数的单调区间;(2)由(1)知,,对m进行分类讨论,确定函数的单调性,从而可求函数的最值,利用函数f(x)在闭区间[m,m+1]上的最小值为0,最大值为,即可求m的值.点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,正确分类讨论是解题的关键.