填空题设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且时,f(x)=-x2,则的值等于________.
网友回答
解析分析:由题设知f(3)=f(1-3)=f(-2)=-f(2)=-[f(1-2)]=-f(-1)=f(1)=f(0)=0.=====-.所以=-.解答:∵奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且时,f(x)=-x2,∴f(3)=f(1-3)=f(-2)=-f(2)=-[f(1-2)]=-f(-1)=f(1)=f(0)=0.=====-.∴=-.故