设函数f(α)=α.(1)设∠A是△ABC的内角,且为钝角,求f(A)的最小值;(2)设∠A,∠B是锐角△ABC的内角,且∠A+∠B=,f(A)=1,BC=2,求△A

发布时间:2020-08-01 03:04:15

设函数f(α)=α.
(1)设∠A是△ABC的内角,且为钝角,求f(A)的最小值;
(2)设∠A,∠B是锐角△ABC的内角,且∠A+∠B=,f(A)=1,BC=2,求△ABC的三个内角的大小和AC边的长.

网友回答

解:(1)f(A)=A=.
∵角A为钝角,
∴.
∴当2A+时,f(A)取值最小值,其最小值为.

(2)由f(A)=1得=1,∴.
∵A为锐角,∴π,
∴2A+,.
又∵A+B=,∴.∴C=.
在△ABC中,由正弦定理得:.∴.
解析分析:(1)利用诱导公式和二倍角公式对函数解析式整理,进而根据A的范围,利用正弦函数的性质求得函数的最大和最小值.(2)利用f(A)=1求得A,进而利用∠A+∠B的值求得B,进而根据三角形内角和求得C,最后利用正弦定理求得AC.

点评:本题主要考查了三角函数的最值问题,正弦定理的应用.考查了综合分析问题的能力和基本的运算能力.
以上问题属网友观点,不代表本站立场,仅供参考!