如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4,求点A到CD所在直线的距离.
网友回答
解:(1)∵△ACD是等腰三角形,∠D=30°,
∴∠CAD=∠CDA=30°.
连接OC,
∵AO=CO,
∴△AOC是等腰三角形,
∴∠CAO=∠ACO=30°,
∴∠COD=60°,
在△COD中,又∵∠CDO=30°,
∴∠DCO=90°
∴CD是⊙O的切线,即直线CD与⊙O相切.
(2)过点A作AE⊥CD,垂足为E.
在Rt△COD中,∵∠CDO=30°,
∴OD=2OC=8,
AD=AO+OD=4+8=12
在Rt△ADE中,∵∠EDA=30°,
∴点A到CD边的距离为:AE==6.
解析分析:(1)已知点C在⊙O上,先连接OC,由已知CA=CD,∠CDA=30°,得∠CAO=30°,∠ACO=30°所以得到∠COD=60,根据三角形内角和定理得∠DCO=90°即能判断直线CD与⊙O的位置关系.(2)要求点A到CD所在直线的距离,先作作AE⊥CD,垂足为E,由,∠CDA=30°,得AE=AD,在直角三角形OCD中,半径OD=4,所以OD=2OC=8,AD=OA+0D=12.从而求出AE.
点评:此题考查的知识点是切线的判定与性质,解题的关键是运用直角三角形的性质及30°角所对直角边的性质,三角形内角和定理.