P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=9和(x-5)2+y2=4上的点,则|PM|-|PN|的最大值为________.

发布时间:2020-08-01 05:30:23

P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=9和(x-5)2+y2=4上的点,则|PM|-|PN|的最大值为________.

网友回答

13

解析分析:先由已知条件知道双曲线的两个焦点为两个圆的圆心,再利用平面几何知识把|PM|-|PN|转化为双曲线上的点到两焦点之间的距离即可求|PM|-|PN|的最大值.

解答:双曲线的两个焦点为F1(-5,0)、F2(5,0),为两个圆的圆心,半径分别为r1=3,r2=2,|PM|max=|PF1|+3,|PN|min=|PF2|-2,故|PM|-|PN|的最大值为(|PF1|+3)-(|PF2|-2)=|PF1|-|PF2|+5=2×4+5=13.故
以上问题属网友观点,不代表本站立场,仅供参考!