设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________.
网友回答
(-∞,-3)
解析分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.
解答:令h(x)=f(x)g(x),则h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),因此函数h(x)在R上是奇函数.∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(-3)=f(-3)g(-3)=0,∴h(x)=f(x)g(x)<0=h(-3),∴x<-3.∴不等式f(x)g(x)<0的解集是(-∞,-3).故