设函数f(x)=x|x-a|,若对于任意x1,x2∈[3,+∞),x1≠x2,不等式>0恒成立,则实数a的取值范围是________.

发布时间:2020-08-01 05:30:13

设函数f(x)=x|x-a|,若对于任意x1,x2∈[3,+∞),x1≠x2,不等式>0恒成立,则实数a的取值范围是________.

网友回答

(-∞,3]

解析分析:由条件可得?函数f(x)=x|x-a|在[3,+∞)上是增函数,再由函数f(x)=x|x-a|的增区间是(-∞,a)、(a,+∞),可得a≤3.

解答:∵对于任意x1,x2∈[3,+∞),x1≠x2,不等式>0恒成立,∴函数f(x)=x|x-a|在[3,+∞)上是增函数.再由函数f(x)=x|x-a|的增区间是(-∞,a)、(a,+∞),可得a≤3,故实数a的取值范围是(-∞,3],故
以上问题属网友观点,不代表本站立场,仅供参考!