如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为A.(4,5)B.(-5,4)C.(-4,6)D.(-4,5)
网友回答
D
解析分析:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=4,AB=8,DM=8-R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.
解答:解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8-R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8-R)2+42,解得R=5,∴M(-4,5).故选D.
点评:本题需仔细分析题意及图形,利用勾股定理来解决问题.