解答题甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三各射击一次,击中目标的次数记为X.
(Ⅰ)求X的分布列;
(Ⅱ)若P(X=1)的值最大,求实数a的取值范围.
网友回答
解:设“甲、乙、丙三名运动员各射击一次击中目标”分别为事件A,B,C,所以,P(C)=a,且A,B,C相互独立.…(1分)
(Ⅰ)X的可能取值为0,1,2,3.
所以,
,
,
.
所以X的分布列为
X0123P…(4分)
(Ⅱ)因为P(ζ=1)的值最大,
所以P(X=1)-P(X=0)≥0,P(X=1)-P(X=2)≥0,P(X=1)-P(X=3)≥0.…(6分)
所以又0<a<1,
解得,
所以a的取值范围是.????????????????????????…(10分)解析分析:(Ⅰ)确定X的可能取值,求出相应的概率,即可得到X的分布列;(Ⅱ)因为P(X=1)的值最大,所以P(X=1)-P(X=0)≥0,P(X=1)-P(X=2)≥0,P(X=1)-P(X=3)≥0,由此可建立不等式组,从而可求实数a的取值范围.点评:本题考查离散型随机变量的分布列,解题的关键是确定变量的取值,求出相应的概率.