如图,在圆内接四边形ABCD中,AB=AD,AC=1,∠ACD=60°,则四边形的面积为________.
网友回答
解析分析:过A作AE⊥BC于E,AF⊥CD于F,证△AEB≌△AFD,推出AE=AF,证Rt△AEC≌Rt△AFC,推出四边形ABCD的面积是2S△ACF,求出△ACF的面积即可.
解答:解:过A作AE⊥BC于E,AF⊥CD于F.∵∠ADF+∠ABC=180(圆的内接四边形对角之和为180),∠ABE+∠ABC=180,∴∠ADF=∠ABE.∵∠ABE=∠ADF,AB=AD,∠AEB=∠AFD,∴△AEB≌△AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF.又∵∠E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC.∵∠ACD=60°,∠AFC=90°,∴∠CAF=30°,∴CF=,AF=,∴四边形ABCD的面积=2S△ACF=2×CF×AF=.故