如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是A.2005B.2006C.2007D.2008

发布时间:2020-07-30 01:22:37

如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是A.2005B.2006C.2007D.2008

网友回答

A
解析分析:把p重新拆分组合,凑成完全平方式的形式,然后判断其最小值.

解答:p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选A.

点评:此题主要考查了完全平方式的非负性,即完全平方式的值是大于等于0的,它的最小值为0,所以在求一个多项式的最小值时常常用凑完全平方式的方法进行求值.
以上问题属网友观点,不代表本站立场,仅供参考!