如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.
网友回答
解:△APQ是等腰直角三角形.
∵BE、CF都是△ABC的高,
∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)
∴∠1=∠2
又∵AC=BP,CQ=AB,
∴△ACQ≌△PBA
∴AQ=AP
∴△ACQ≌△PBA
∴∠CAQ=∠BPA=∠3+90°
∴∠QAP=∠CAQ-∠3=90°
∴AQ⊥AP
∴△APQ是等腰直角三角形
解析分析:利用BE、CF都是△ABC的高,求证∠1=∠2,然后求证△ACQ≌△PBA,利用AQ=AP,AQ⊥AP,即可证明△APQ是等腰直角三角形.
点评:此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题.