如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与

发布时间:2020-07-30 02:01:23

如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为A.10cmB.4πcmC.D.

网友回答

C
解析分析:根据旋转的定义得到点A以B为旋转中心,以∠BAA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,由于∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,然后根据弧长公式计算即可.

解答:点A以B为旋转中心,以∠BAA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,∵∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,∴点A翻滚到A2位置时共走过的路径长=+=π(cm).故选C.

点评:本题考查了弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.
以上问题属网友观点,不代表本站立场,仅供参考!