解答题已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1?k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程,并说明轨迹是什么曲线.
网友回答
解:(Ⅰ)由题意可得圆的方程为x2+y2=b2,
∵直线x-y+2=0与圆相切,
∴,
即,
又,
即,
a2=b2+c2,
解得,c=1,
所以椭圆方程为.
(Ⅱ)设P(x0,y0)(y0≠0),
,,
则,即,
则,,
即,
∴k1?k2为定值.
(Ⅲ)设M(x,y),其中.
由已知及点P在椭圆C上可得,
整理得(3λ2-1)x2+3λ2y2=6,其中.
①当时,化简得y2=6,
所以点M的轨迹方程为,轨迹是两条平行于x轴的线段;
②当时,方程变形为,其中,
当时,点M的轨迹为中心在原点、实轴在y轴上的双曲线满足的部分;
当时,点M的轨迹为中心在原点、长轴在x轴上的椭圆满足的部分;
当λ≥1时,点M的轨迹为中心在原点、长轴在x轴上的椭圆解析分析:(I)写出圆的方程,利用直线与圆相切的充要条件列出方程求出b的值,利用椭圆的离心率公式得到a,c的关系,再利用椭圆本身三个参数的关系求出a,c的值,将a,b的值代入椭圆的方程即可.(II)设出P的坐标,将其代入椭圆的方程得到P的坐标的关系,写出A,B的坐标,利用两点连线的斜率公式求出k1,k2,将P的坐标的关系代入k1k2化简求出其值.(III)设出M的坐标,求出P的坐标,利用两点的距离公式将已知的几何条件用坐标表示,通过对参数λ的讨论,判断出M的轨迹.点评:求圆锥曲线的方程,一般利用待定系数法;解决直线与圆锥曲线的位置关系问题,一般设出直线方程,将直线方程与圆锥曲线方程联立,消去一个未知数,得到关于一个未知数的二次方程,利用韦达定理,找突破口.注意设直线方程时,一定要讨论直线的斜率是否存在.