已知椭圆的中心为原点O,一个焦点为F,离心率为.以原点为圆心的圆O与直线互相切,过原点的直线l与椭圆交于A,B两点,与圆O交于C,D两点.
(1)求椭圆和圆O的方程;
(2)线段CD恰好被椭圆三等分,求直线l的方程.
网友回答
解:(1)∵椭圆的焦点为F,离心率为,∴
∴a=2,b==1
∴椭圆的方程为
∵以原点为圆心的圆O与直线相切
∴圆O的半径为
∴圆O的方程为x2+y2=16;
(2)设直线l的方程为y=kx,代入椭圆方程可得
∴x=±,∴y=±k
∴A(,k),B(-,-k),
∴|AB|=
∵线段CD恰好被椭圆三等分,
∴
∴,
∴
∴直线l的方程为.
解析分析:(1)根据椭圆的焦点为F,离心率为,可得椭圆的几何量,从而可得椭圆的方程,利用以原点为圆心的圆O与直线相切,可得圆的半径,从而可圆的而发愁;(2)设直线l的方程为y=kx,代入椭圆方程,求得A,B的坐标,求出|AB|,利用线段CD恰好被椭圆三等分,建立方程,可得k的值,从而可求直线l的方程.
点评:本题考查椭圆、圆的方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.