如图,已知椭圆的左顶点为A,左焦点为F,上顶点为B,若∠BAO+∠BFO=90°,则该椭圆的离心率是________.
网友回答
解析分析:先作出椭圆的右焦点F′,根据条件得出AB⊥BF′.再求出A、B、F′的坐标,由 两个向量的数量积的性质得出a,b、c的关系建立关于离心率e的方程,解方程求得椭圆C的离心率e.
解答:解:设椭圆的右焦点为F′,由题意得 A(-a,0)、B(0,b),F′(c,0),∵∠BAO+∠BFO=90°,且∠BFO=∠BF′O,∴∠BAO+∠BF′O=90°,∴?=0,∴(a,b)?(c,-b)=ac-b2=ac-a2+c2=0,∴e-1+e2=0,解得? e=,故