解答题已知函数f(x)=x3-2ax2-3x,x∈R.
(Ⅰ)当a=0时,求函数f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)≥ax恒成立,求a的取值范围.
网友回答
解:(I)当a=0时,f(x)=x3-3x,故f'(x)=3x2-3…(1分)
因为当x<-1或x>1时,f'(x)>0
当-1<x<1时,f'(x)<0
故f(x)在(-∞,-1]和[1,+∞)上单调递增,在(-1,1)上单调递减.…(5分)
(II)由题意可知x3-2ax2-3x≥ax在(0,+∞)上恒成立,
即x2-2ax-(3+a)≥0在(0,+∞)上恒成立.…(7分)
令g(x)=x2-2ax-(3+a),
因为…(9分)
故x2-2ax-(3+a)≥0在(0,+∞)上恒成立等价于即解得a≤-3…(12分)解析分析:(I)当a=0时,f(x)=x3-3x,f'(x)=3x2-3,根据二次函数的图象和性质,我们易判断出导函数的符号,进而根据导数符号与单调性的关系,即可得到函数的单调性.(II)由已知中x∈(0,+∞)时,f(x)≥ax恒成立,我们可以构造函数g(x)=x2-2ax-(3+a),根据二次函数的图象和性质,构造关于a的不等式,进而得到