如图,在△ABC中,∠A=105°,AD⊥BC,垂足为D,且AB+BD=CD,则∠C的度数是________.
网友回答
25°
解析分析:延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E,再根据外角的性质即可求得∠ABD=2∠E,根据三角形内角和公式即可求得∠C的度数.
解答:解:延长DB至E,使BE=AB,连接AE.∵AB+BD=CD(已知),∴BE+BD=CD(等量代换),即DE=CD∴∠C=∠E;∵BE=AB,∴∠ABD=2∠E(外角定理);∵∠BAC=105°,∴∠C=25°(三角形内角和定理).故