如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1,AB:BC=2:1,则tan∠AHE的值为A.B.C.D.

发布时间:2020-07-31 01:17:10

如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1,AB:BC=2:1,则tan∠AHE的值为A.B.C.D.

网友回答

A
解析分析:先求出△AEH与△BFE相似,再根据其相似比EF:FG=3:1设出AE、BF的长及AB、BC的长,求出的值即可.

解答:∵四边形EFGH是矩形ABCD的内接矩形,EF:FG=3:1,AB:BC=2:1,∴∠HEA+∠FEB=90°,∵∠FEB+∠EFB=90°,∴∠HEA=∠EFB,∵∠HAE=∠B,∴Rt△HAE∽△EBF,∴===,同理可得,∠GHD=∠EFB,HG=EF,∴△GDH≌△EBF,DH=BF,DG=EB,设AB=2x,BC=x,AE=a,BF=3a,则AH=x-3a,AE=a,∴tan∠AHE=tan∠BEF,即=,解得:x=8a,∴tan∠AHE===.故选A

点评:此题比较复杂,解答此题的关键是根据题意求出相似三角形的相似比,根据各边之间的关系列出方程解答.
以上问题属网友观点,不代表本站立场,仅供参考!