解答题已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式

发布时间:2020-07-09 07:10:06

解答题已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)解关于x的不等式f(x)+a-1>0(a∈R);
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

网友回答

解:(Ⅰ)不等式f(x)+a-1>0即为|x-2|+a-1>0,
当a=1时,解集为x≠2,即(-∞,2)∪(2,+∞);
当a>1时,解集为全体实数R;
当a<1时,解集为(-∞,a+1)∪(3-a,+∞).
(Ⅱ)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立,
即|x-2|+|x+3|>m恒成立,(7分)
又由不等式的性质,对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5,
故m的取值范围是(-∞,5).解析分析:(1)不等式转化为|x-2|+|a-1>0,对参数a进行分类讨论,分类解不等式;(2)函数f(x)的图象恒在函数g(x)图象的上方,可转化为不等式|x-2|+|x+3|>m恒成立,利用不等式的性质求出|x-2|+|x+3|的最小值,就可以求出m的范围.点评:本题考查绝对值不等式的解法,分类讨论的方法,以及不等式的性质,涉及面较广,知识性较强.
以上问题属网友观点,不代表本站立场,仅供参考!