设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).(1)设bn=an+1-2an,证明数列{bn}是等比数列;(2)求数列{an}的通项

发布时间:2020-07-31 21:59:30

设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.

网友回答

解:(1)由a1=1,及Sn+1=4an+2,
得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2-2a1=3.
由Sn+1=4an+2,①
则当n≥2时,有Sn=4an-1+2,②
①-②得an+1=4an-4an-1,所以an+1-2an=2(an-2an-1),
又bn=an+1-2an,所以bn=2bn-1,所以{bn}是以b1=3为首项、以2为公比的等比数列.(6分)
(2)由(I)可得bn=an+1-2an=3?2n-1,所以.
所以数列是首项为,公差为的等差数列.
所以,即an=(3n-1)?2n-2(n∈N*).(13分)
解析分析:(1)由题设条件知b1=a2-2a1=3.由Sn+1=4an+2和Sn=4an-1+2相减得an+1=4an-4an-1,即an+1-2an=2(an-2an-1),所以bn=2bn-1,由此可知{bn}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{an}的通项公式.

点评:本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.
以上问题属网友观点,不代表本站立场,仅供参考!