解答题在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:=+,那么在四面体A-BCD

发布时间:2020-07-09 05:27:25

解答题在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:=+,那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明理由.

网友回答

解:如图(1)所示,由射影定理知AD2=BD?DC,AB2=BD?BC,AC2=BC?DC,
∴=
==.
又BC2=AB2+AC2,
∴==+.
所以=+.
类比AB⊥AC,AD⊥BC猜想:
四面体A-BCD中,AB、AC、AD两两垂直,
AE⊥平面BCD,则=++.
如图(2),连接BE交CD于F,
连接AF.∵AB⊥AC,AB⊥AD,
∴AB⊥平面ACD.
而AF?平面ACD,∴AB⊥AF.
在Rt△ABF中,AE⊥BF,
∴=+.
在Rt△ACD中,AF⊥CD,
∴=+.
∴=++,故猜想正确.解析分析:利用平面中的射影定理证明;将平面中的三角形类比成空间的三棱锥,三角形的两边垂直类比成三棱锥的三棱垂直,得到类比性质通过作辅助线将空间的证明问题转化为三角形中的性质.点评:本题考查利用类比推理得到结论、证明类比结论时证明过程与其类比对象的证明过程类似或直接转化为类比对象的结论.
以上问题属网友观点,不代表本站立场,仅供参考!