在实数范围内分解因式。
推荐回答
设 x²+xy-3y²=(x+ay)(x-by)=x²+(a-b)xy-aby²;∴ a-b=1.........①;ab=3........②;由①得b=a-1,代入②式得 a(a-1)=3,即有a²-a-3=0;故a=(1±√13)/2;b=a-1=(1±√13)/2-1=(-1±√13)/2;取a=(1+√13)/2;b=(-1+√13)/2;于是 x²+xy-3y²=[x+(1+√13)y/2][x-(-1+√13)y/2]=[x+(1+√13)y/2][x+(1-√13)y/2];