解答题设△ABC的内角A,B,C的对边分别为a,b,c,且满足a=bsinA.(Ⅰ)求

发布时间:2020-07-09 01:17:07

解答题设△ABC的内角A,B,C的对边分别为a,b,c,且满足a=bsinA.
(Ⅰ)求B的大小;
(Ⅱ)求cosA+cosC的取值范围.

网友回答

解:(Ⅰ)由a=bsinA,根据正弦定理得sinA=sinBsinA,A、B是△ABC的内角
所以sinA≠0,
所以sinB=1,
得B=.?????????(5分)
(Ⅱ)由(Ⅰ)知A+C=,
则有cosA+cosC=cosA+cos()=cosA+sinA=,
∵A
∴A+,
∴sin(A+]∈,
∈(1,],
故cosA+cosC∈(1,]
(10分)解析分析:(Ⅰ)结合已知表达式,利用正弦定理直接求出B的值.(Ⅱ)利用(Ⅰ)得到A+C的值,化简cosA+cosC为一个角的三角函数,结合角的范围即可求出表达式的取值范围点评:本题是中档题,考查三角函数的化简求值,正弦定理与两角和与差的正弦函数的应用,考查计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!