如图,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.
(I)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.
网友回答
(Ⅰ)证明:∵AE=AB,
∴BE=AB,
∵在正△ABC中,AD=AC,
∴AD=BE,
又∵AB=BC,∠BAD=∠CBE,
∴△BAD≌△CBE,
∴∠ADB=∠BEC,
即∠ADF+∠AEF=π,所以A,E,F,D四点共圆.…(5分)
(Ⅱ)解:如图,
取AE的中点G,连接GD,则AG=GE=AE,
∵AE=AB,
∴AG=GE=AB=,
∵AD=AC=,∠DAE=60°,
∴△AGD为正三角形,
∴GD=AG=AD=,即GA=GE=GD=,
所以点G是△AED外接圆的圆心,且圆G的半径为.
由于A,E,F,D四点共圆,即A,E,F,D四点共圆G,其半径为.…(10分)
解析分析:(I)依题意,可证得△BAD≌△CBE,从而得到∠ADB=∠BEC?∠ADF+∠AEF=π,即可证得A,E,F,D四点共圆;(Ⅱ)取AE的中点G,连接GD,可证得△AGD为正三角形,GA=GE=GD=,即点G是△AED外接圆的圆心,且圆G的半径为.
点评:本题考查利用综合法进行证明,着重考查全等三角形的证明与四点共圆的证明,突出推理能力与分析运算能力的考查,属于难题.