如图,等腰梯形ABCD中,AB∥CD,AB=2CD,AC交BD于点O,点E、F分别为AO、BO的中点,则下列关于点O成中心对称的一组三角形是A.△ABO与△CDOB.

发布时间:2020-07-30 06:09:08

如图,等腰梯形ABCD中,AB∥CD,AB=2CD,AC交BD于点O,点E、F分别为AO、BO的中点,则下列关于点O成中心对称的一组三角形是A.△ABO与△CDOB.△AOD与△BOCC.△CDO与△EFOD.△ACD与△BCD

网友回答

C
解析分析:利用全等三角形的判定方法得到△CDO与△EFO全等,即其是关于点O成中心对称的一组三角形.

解答:∵点E、F分别为AO、BO的中点,∴AB=2EF,EF∥AB,∵AB∥CD,∴CD∥EF,∴∠CDO=∠OFE,∠DCO=∠FEO,∵AB=2CD,AB=2EF,∴EF=CD,∴△CDO≌△EFO,即关于点O成中心对称的一组三角形是△CDO与△EFO.故选C.

点评:此题主要考查学生对等腰梯形的性质及中心对称的定义的掌握情况.【链接】中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.
以上问题属网友观点,不代表本站立场,仅供参考!