如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在

发布时间:2020-07-30 09:13:03

如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为.
其中正确结论的个数是A.1个B.2个C.3个D.4个

网友回答

B
解析分析:①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;②当E为AC中点,F为BC中点时,四边形CEDF为正方形;③由割补法可知四边形CDFE的面积保持不变;④△DEF是等腰直角三角形,DE=EF,当DF与BC垂直,即DF最小时,FE取最小值2 ,此时点C到线段EF的最大距离.

解答:解:①连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∵AE=CF,∴△ADE≌△CDF;∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.故此选项正确;②当E、F分别为AC、BC中点时,四边形CDFE是正方形,故此选项错误;③如图2所示,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,可以利用割补法可知四边形CDFE的面积等于正方形CMDN面积,故面积保持不变;故此选项错误;④△DEF是等腰直角三角形,DE=EF,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=2 ,∵CE=CF=2,∴此时点C到线段EF的最大距离为EF=.故此选项正确;故正确的有2个,故选:B.

点评:此题主要考查了全等三角形的判定与性质以及正方形、等腰三角形、直角三角形性质等知识,根据图形利用割补法可知四边形CDFE的面积等于正方形CMDN面积是解题关键.
以上问题属网友观点,不代表本站立场,仅供参考!